自己組織化は非常に幅広い概念である。銀河形成のような宇宙的な規模から台風や竜巻、コップの中のお湯の対流、多様な雪の結晶形など身近な物理現象に至るまで、数え切れないほどの自然現象が自己組織化と結び付けられている。生命は自己組織化の塊である。細胞をはじめとする生体組織の構造だけでなく脳のニューロンネットワークなど、さまざまなレベルで自己組織化と見られる現象が見出されている。機械システムのネットワーク化、社会工学の分野でも自己組織化の概念は重要となっている。このように幅広い分野で活用されているだけに、「自己」をどう的確に定義するかは容易ではない。分野による考え方の相違もあれば、自己組織化なのか、組織化なのか、それとも単なる集合や連合であるか、さまざまなケースが含まれよう。編集委員会では、このような状況下では、厳密な定義による一元的なまとめは逆効果であると判断した。それよりも、自己組織化と「想定できる」現象を集め、それらの現象に内在する関係性を編集委員である山口智彦氏のガイド図に従い整理することにした。それが今後の「自己組織化」概念の展開にもっとも有効であると考えた。関係性の整理が抽象的にならざるを得ないが、そのことが逆に異分野、異技術にまたがる発展を作り出す可能性を生む。
 何故、今あらたに、自己組織化が関心を呼ぶのか。われわれが置かれている時代背景に、その理由を求めることができよう。第一に、われわれの生態系や地球環境のような複雑なシステムでは、大局的にも局所的にも自己組織的な現象が存在し、その理解がなければ直面する環境エネルギーの課題にも正しい対応ができない、と見られている。第二に、情報技術の発展とそれに伴う社会や産業の構造変化が、われわれにフラットな世界での「つながり」をいっそう意識させることとなった。世界的な情報のネットワーク化により、一人ひとりが地球の隅々までとつながる。断片的な産業情報が集まってまったく新しい意味を生み出すのは自己組織化の象徴的な例である。第三は、物質材料分野におけるナノテクノロジーの展開である。ナノテクの進歩により、一個一個の原子や分子を観測し操ることが可能となった。これは基礎科学の大きな勝利であるが、それらの成果を活用して新しい産業を生み出すには、原子分子を組織化し現実のデバイスにくみ上げることが必要である。原子分子とマクロなデバイスとの間のサイズの違いはあまりにも大きいので、自己組織化の手法を使ってサイズギャップを埋めることの期待はきわめて大きい。  環境エネルギーの問題が科学技術の幅広い領域での主要な課題となりつつある。その中で自己組織化の概念が大きな役割を果たすと信じている。
 編集委員の一人として、きわめて多数の著者のご協力を得られたことに心から感謝したい。また、編集にあたって大変な努力をしていただいた(株)エヌ・ティー・エスの皆さんにお礼を申し上げたい。本書がわが国における「自己組織化」の研究開発に貢献することを期待している。
「発刊のことば」より2009年9月24日 国武 豊喜
Copyright (C) 2009 NTS Inc. All right reserved.