全固体リチウムイオン電池の展望〜正・負極材と材料・部材のパラダイムシフト〜


第1章 単元・多元系正極材、新規負極材の特性と電極板製造の隘路
   (リチウムイオン電池の現状と性能向上)
 1.1 リチウムイオン電池の基本3 特性(エネルギー、パワーとサイクル)
 1.2 正極材の特性と選択(1)単元系、多元系
 1.3 正極材の特性と選択(2)研究から実用へのシミュレーション
 1.4 多元系正極材の化学組成(湿式合成とモルフォロジー)
 1.5 新規負極材の特性と選択(セルの基盤としての役割)
 1.6 電極板の製造における正極材の課題(アルカリ性と塗工への適合)
 1.7 正極材の実用電池としての課題(材料コストと用途分野)
 1.8 (参考)正極材のファラディー則と拡大
 1.9 (参考)NMC正極材の特許問題

第2章 全固体リチウムイオン電池への期待と展望(電池/セル)
   (パラダイムシフト=局面の転換、材料とプロセス技術基盤の再構築へ)
 2.1 リチウムイオン電池(セル)の構成、構造と電気化学(イオン伝導、電子伝導と内部インピーダン
 2.2 現行(液系電解液(質))電池の基本特性と性能レベル
 2.3 モバイル、EV、定置ほかの電池特性と要求レベル
 2.4 構成材料の限界とブレークスルー(電解液、電解質)
 2.5 イオン伝導性のレベルアップ(有機電解液系、ポリマーゲル系と全固体電解質)
 2.6 セル内部の電解質と正負極材の関係(重量、体積の分布と電気化学的ポテンシャル)
  2.6.1 電解質溶液の不合理と固体電解質のポテンシャル
  2.5.2 試算の過程(1)Faraday 則、電解質の比容量、正負電極層、セパレータ
  2.5.3 試算の過程(2)仮想正極材VTCM
  2.5.4 セルの構成(1)材料と部材の重量と体積
  2.6.5 セルの構成(2)リチウム含有成分の重量と体積
  2.6.6 電解質と比較物質の“比容量”
 2.7 まとめ

第3章 安全性問題、規格・規制と安全試験の概要
   (全固体リチウムイオン電池の扱いほか)
 3.1 安全性(1)過充電、過放電、外部・内部短絡と熱暴走
  3.1.1 過充電、過放電とガス膨張
  3.1.2 内部短絡とセパレータ
  3.1.3 電解液系セルの安全対策
 3.2 安全性(2)国内外&グローバル規制と試験規格への対応
  3.2.1 国内外の安全性規格と試験方法
  3.2.2 EV用リチウムイオン電池の安全性試験規格
 3.3 安全性(3)法規制(消防法、電気用品安全法、毒物及び劇物取締法ほか)
 3.4 安全性(4)製造工程における安全品質と運用
 3.5 (資料)リチウムイオン電池の規格一覧表

第4章 全固体リチウムイオン電池の可能性
 4.1 全固体リチウムイオン電池の可能性(1)セルの構成(正・負極材の選択)
  4.1.1 正極/電解質/負極
  4.1.2 電解質、溶液から固体へ
  4.1.3 セルの構成、アイデアも含めて
  4.1.4 正・負極材の選択と新たな可能性
 4.2 全固体リチウムイオン電池の可能性(2)セルの設計(電極面積の課題とセル設計)
  4.2.1 電極面積
  4.2.2 セル設計のステップ
 4.3 全固体リチウムイオン電池の可能性(3)セルの特性(放電容量 Wh=Ah×V)
  4.3.1 ラボデータから実用セルのシミュレーション
  4.3.2 電解質の耐電圧 CV測定例
  4.3.3 双極子セルの可能性
 4.4 全固体リチウムイオン電池の可能性(4)セルの製造(全固体による乾式工程への転換の期待)
 4.5 全固体リチウムイオン電池の可能性(5)安全性とコストダウンの想定
 4.6 全固体電池に関する各社の開発事例 2016−2018 日本
 4.7 第4章のまとめ
 4.8 追補 電気化学的な要件

第5章 電池原材料の試算と市場
   (EVなど需要拡大と電池原材料の試算と市場規模)
 5.1 EVの予測、電池総量とコスト推定
 5.2 電池総量GWh あたりの原材料の所要量試算
 5.3 試算の算定基礎と参考データ


 
全固体リチウムイオン電池の展望
〜正・負極材と材料・部材のパラダイムシフト〜
Copyright (C) 2018 NTS Inc. All right reserved.