出版にあたって
生物のもつ機能には、人工的につくったものに比べ格段に機能的であり有用であるものが多い。それにもかかわらず、現在の科学技術ではまだ実現できないほど複雑で巧妙なものがほとんどである。このような巧妙な仕組みを如何に実現するか、どのように人工的に作り上げるかあるいは模倣するかが、21世紀の科学技術の重要な課題としてもち上がっている。この生物の機能や有用な構造を人工的に模倣することを“バイオミメティックス”と呼ぶ。その“ミメティクス”の概念を最初に拡張して世に問うたものが、“バイオミメティックス・ハンドブック”(エヌ・ティー・エス)であり、その続編の一つとして、本書は植物の構造や機能を“ミメティック”しようと企画された。
植物に限らず生物の研究には、遺伝子レベルから個体・生態レベルまでの様々な階層の研究がある。これは私の専門分野(物理学)で言えば、素粒子研究からマクロ物性研究(例えば、電気伝導度、粘性、弾性など物質の特性の起源の研究)までに相当する。これまでの物理学の「素粒子が分かれば全ての物質が分かる」という要素還元論的発想は、ある意味で現代生物学の「遺伝子が分かれば生物が分かる」という発想と繋がる。生物が要素還元論的でないことは自明であるが、確かに本質を遺伝子に求め帰着させることは、素粒子論同様に純学問的で大変に重要である。しかし、それだけではただちに様々な階層レベルに存在する様々な研究ニーズや他分野までを包含するニーズを満足できないうえに、生物を理解してそれを利用する方向には進まない。例えば、工学者(技術者)にとって、素粒子の理解がいくら進展しようがその本質論にはあまり興味がなく、物質のマクロ物性を解明し、それを応用できれば十分である。さらに言えば、実用的応用まで到達するには、様々な階層・分野の研究・開発と種々の技術が必要である。例えば、物性研究者が半導体の機構を解明し、それを基に新規な半導体を考案し、電子工学の研究者・技術者がその性質を利用して素子をつくり回路を設計し、各分野の技術者集団が総合してコンピューターや携帯電話を生み出す。このように実用レベルに進むにつれて関与する学問・研究の裾野は次第に広くなってくる。これと同様に、将来、生物を工学的・人工的に応用しようとすると、必然的に多くの分野の研究者・技術者の関与が必要となってくることは明白である。そこで、そのための準備として、まず遠くはなれた各分野で個別に連携なく行われていた多くの生物研究の系統的な整理と体系的な位置づけがなされることが必要と思われる。
20世紀末から遺伝子解明の進展に伴って、ゲノムサイエンスからポストゲノムサイエンスへと関心が移ってきている。その代表例が、ゲノムからトランスクリプトーム、プロテオーム、メタボロームそしてこれらを網羅的に解明しようとするオミックスであろう。それは、例えば、遺伝子の解明から生物の部品を探り、そこから生命の機能や形態を組み立てようとする科学である。しかしながら、単に要素還元して部品(遺伝子の塩基配列やタンパク質の機能)を解明し、それを組み立てても目的とする生命機能は生まれないことが、複雑システムの特徴である。すなわち部品の間の静的・動的相互作用いわゆる関係学が理解されなければ、生命を理解したことにはならない。このように時間的な要素も導入した上で、生物の機能を考える必要があり、これらを総称してシステムバイオロジーと呼ぶ。これは物理の要素還元論とは異なり、生物を複雑なシステムとして理解しようという立場にたって、生物機能をデザインしようと試みるもので、ダイナミクスの模倣まで含んだある種のバイオミメティックスである。ここでも、現在、非常に広い分野に裾野を広げつつある。
本書は、上述のような背景に沿って、植物を対象にした先進的なバイオミメティックスすなわち「プラントミメティックス」という新しい切り口で編集されている。したがって、ここでは、古典的なバイオミメティックス(静的な生物模倣)の概念に加えて、新しい概念(動的な生物模倣)を導入した。古典的な植物バイオミメティックスの一例は、ボタン代わりにしばしば使われるマジックテープに代表される。これはオオオナモミに代表されるような草むらに入るとセーターなどにくっつく植物の仕掛けを模倣したものである。あるいはエノコログサ(ネコじゃらし)や食虫植物のもつ構造や機能をアクチュエーターや輸送手段として応用した例などがある。しかし本書では、ミメティックスの概念をさらに拡大させ、植物のもつ関係学まで模倣しようという立場である。例えば、師管や道管が切断された場合に周囲の細胞が分化しそれを補う、いわゆるフェイルフリーを生み出すダイナミクスまでも真似ようというものである。つまり、植物特有の形、自己組織化機能、自己増殖修復機能、学習などのダイナミクスや形成機構の解明、植物間の種々の相互作用から想定される植物の生存・成長・分化機能の解明など純学問的探求を通して、植物が呈す全ての性質を可能な限り人工的に模倣・応用しようという提案である。その観点から本書の最終目標として、遺伝子の発現を介した植物の機能や形態の発現プロセスそのものがどのように人工物として応用できるかに対するヒントや回答を与えることができればと期待している。
このように、本書は、単に植物の工学利用を目的としたものでも、一部の関連分野の専門家(例えば、植物学、生物工学など)のみを対象にして企画・編集されたものでもない。むしろ、システムバイオロジーの基本的な考え方と同様、植物を一つの複雑システムと捉え、理工農を越えて学際的に様々な階層レベルに存在する様々な研究ニーズ・技術ニーズの基礎と応用、さらには初学者の知的好奇心までも満足させることを目標に編集された。したがって、多種多様な分野・階層の読者に、できれば裾野を広げて一般の読者も含めて、興味をもって読んでもらえるように、様々な分野の相互関係を編集会議で十分議論し、編・章・項目設定を工夫して構成したつもりである。その結果、まず、これまで各分野で行われていた植物関連の研究をまとめて整理し、分野に横断的な基礎に相当する部分は、各分野でどのように進められていたかを概観できるように基礎編に配置し、いくぶん専門的・個別的な話題を応用編として項目ごとにまとめた。また、一般読者にも十分興味を持って頂くために、ところどころに意外性のある話題をコラムとして挿入している。ただ、現時点では欠けている項目や話題もあり、また必ずしも本書の全てが、いわゆる“ミメティック”と呼ばれる範疇に入るものではない点、不満な読者もおられることと推察する。しかし、むしろそれ故、最初に述べたように本書での新しい考え方やアプローチの仕方を発展させて、実際に“ミメティック”を開花させていくには、読者諸兄姉の力によるところが大きいと考えている。この点監修者・編集者の心意気をくみ取って頂き、願わくは、このハンドブックを契機に、「プラントミメティックス」という概念が芽吹いて定着し、新しい学術研究分野・応用分野として認知・開拓されることを、監修者ならびに編集者一同おおいに切望するところである。
最後に、本書は、監修者の何気ない一言をエヌ・ティー・エス編集企画部の松風まさみ氏が真摯に捉えて下さり実現しようと努力されたもので、同氏の絶え間ないはげましと尽力そして迅速な活動に支えられて陽の目をみたものである。同氏をはじめとして無理難題を聞き快く応じて下さった執筆者の各位ならびに本書の出版企画に理解を示し推進して下さったエヌ・ティー・エスの吉田隆社長にあわせて深甚なる謝意を表する。
監修者・編集者を代表して 平成18年6月 甲斐 昌一
 
Copyright (C) 2006 NTS Inc. All right reserved.